A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells

Via Peters
  • Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    PubMed 

    Google Scholar
     

  • Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhoj, V. G. et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 128, 360–370 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Trabolsi, A., Arumov, A. & Schatz, J. H. T cell-activating bispecific antibodies in cancer therapy. J. Immunol. 203, 585–592 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L. et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 1, 86–98 (2020).

    PubMed 

    Google Scholar
     

  • Steinmetz, A. et al. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. MAbs 8, 867–878 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berchuck, A. et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50, 4087–4091 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Burstein, H. J. The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med. 353, 1652–1654 (2005).

    CAS 

    Google Scholar
     

  • Gravalos, C. & Jimeno, A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann. Oncol. 19, 1523–1529 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. K., Kim, K. A., Lee, C. Y. & Shim, H. S. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma. PLoS ONE 12, e0171280 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollock, N. I. & Grandis, J. R. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 526–533 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Santin, A. D. et al. Amplification of c-erbB2 oncogene: a major prognostic indicator in uterine serous papillary carcinoma. Cancer 104, 1391–1397 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Siena, S. et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann. Oncol. 29, 1108–1119 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, H. H. et al. Association of HER2/ErbB2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Clin. Cancer Res. 18, 546–554 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks, D. G. & Kulkarni, S. HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools. Am. J. Clin. Pathol. 129, 263–273 (2008).

    PubMed 

    Google Scholar
     

  • Pohlmann, P. R., Mayer, I. A. & Mernaugh, R. Resistance to trastuzumab in breast cancer. Clin. Cancer Res. 15, 7479–7491 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shak, S. Overview of the trastuzumab (herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin. Oncol. 26, 71–77 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. & Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target Ther. 4, 34 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laux, I. et al. Response differences between human CD4(+) and CD8(+) T-cells during CD28 costimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during aging. Clin. Immunol. 96, 187–197 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroschinsky, F. et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care 21, 89 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saber, H., Del Valle, P., Ricks, T. K. & Leighton, J. K. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul. Toxicol. Pharmacol. 90, 144–152 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Baselga, J. et al. Phase II study of weekly intravenous trastuzumab (herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin. Oncol. 26, 78–83 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Zuch de Zafra, C. L. et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin. Cancer Res. 25, 3921–3933 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Harbeck, N. et al. HER2 dimerization inhibitor pertuzumab—mode of action and clinical data in breast cancer. Breast Care (Basel) 8, 49–55 (2013).


    Google Scholar
     

  • Niculescu-Duvaz, I. Trastuzumab emtansine, an antibody-drug conjugate for the treatment of HER2+ metastatic breast cancer. Curr. Opin. Mol. Ther. 12, 350–360 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bang, Y. J. et al. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann. Oncol. 28, 855–861 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, K. L. & Buzdar, A. U. Evolving novel anti-HER2 strategies. Lancet Oncol. 10, 1179–1187 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mignot, F. et al. Concurrent administration of anti-HER2 therapy and radiotherapy: systematic review. Radiother. Oncol. 124, 190–199 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Vu, T. & Claret, F. X. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2, 62 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buie, L. W., Pecoraro, J. J., Horvat, T. Z. & Daley, R. J. Blinatumomab: a first-in-class bispecific T-cell engager for precursor B-cell acute lymphoblastic leukemia. Ann. Pharmacother. 49, 1057–1067 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tran, B. et al. 609O Results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 31, s507 (2020).


    Google Scholar
     

  • Deegen, P. et al. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 2928–2937 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Raghu, G. et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur. Respir. J. 52, 1801130 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358, 85–90 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alegre, M. L. et al. A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57, 1537–1543 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, K. B. & Ellis, S. A. Standardisation of a procedure for quantifying surface antigens by indirect immunofluorescence. J. Immunol. Methods 228, 29–36 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • https://www.nature.com/articles/s41586-022-04439-0

    Next Post

    17 Best CBD Gummies for Type 2 Diabetes

    This article contains affiliate links to products. We may receive a commission for purchases made through these links. Living your best life can be a monumental challenge when living with a chronic illness. Especially one as annoying, and potentially catastrophic, as type 2 diabetes. There are hundreds of guides available […]