Evidence of antagonistic predictive effects of miRNAs in breast cancer cohorts through data-driven networks

Via Peters
  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    PubMed 

    Google Scholar
     

  • Larsen, I., Møller, B., Johannesen, T. et al. Cancer registry of Norway. Cancer in Norway 2019—Cancer incidence, mortality, survival and prevalence in Norway. Tech. Rep., Cancer Registry of Norway (2020).

  • Dafni, U., Tsourti, Z. & Alatsathianos, I. Breast cancer statistics in the European union: Incidence and survival across European countries. Breast Care 14, 344–353 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, J. T., Wang, F., Chapin, W. & Huang, R. S. Identification of micrornas as breast cancer prognosis markers through the cancer genome atlas. PLoS ONE 11, e0168284 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhami, M., Haghdoost, A. A., Sadeghi, B. & Afshar, R. M. Candidate miRNAs in human breast cancer biomarkers: A systematic review. Breast Cancer 25, 198–205 (2018).

    PubMed 

    Google Scholar
     

  • Haakensen, V. D. et al. Subtype-specific micro-rna expression signatures in breast cancer progression. Int. J. Cancer 139, 1117–1128 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Volinia, S. et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microrna. Proc. Natl. Acad. Sci. 109, 3024–3029 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bavelloni, A. et al. Mirna-210: A current overview. Anticancer Res. 37, 6511–6521 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Shao, B. et al. Plasma micrornas predict chemoresistance in patients with metastatic breast cancer. Technol. Cancer Res. Treatm. 18, 1533033819828709 (2019).

    CAS 

    Google Scholar
     

  • Stepanenko, A., Vassetzky, Y. & Kavsan, V. Antagonistic functional duality of cancer genes. Gene 529, 199–207 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Rawlings-Goss, R. A., Campbell, M. C. & Tishkoff, S. A. Global population-specific variation in mirna associated with cancer risk and clinical biomarkers. BMC Med. Genom. 7, 1–14 (2014).


    Google Scholar
     

  • Guo, Y. et al. Statistical strategies for micrornaseq batch effect reduction. Transl. Cancer Res. 3, 260 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Del Vescovo, V., Meier, T., Inga, A., Denti, M. A. & Borlak, J. A cross-platform comparison of affymetrix and agilent microarrays reveals discordant mirna expression in lung tumors of c-raf transgenic mice. PLoS ONE 8, e78870 (2013).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Molinari, R. et al. Swag: A Wrapper Method for Sparse Learning 20–49 (Swiss Finance Institute Research Paper, 2020).


    Google Scholar
     

  • Nielsen, J. Systems biology of metabolism. Annu. Rev. Biochem. 86, 245–275 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Alon, U. Biological networks: The tinkerer as an engineer. Science 301, 1866–1867 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Di Carlo, S., Politano, G., Savino, A. & Benso, A. A systematic analysis of a mi-rna inter-pathway regulatory motif. J. Clin. Bioinform. 3, 1–14 (2013).


    Google Scholar
     

  • Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caruana, R., Niculescu-Mizil, A., Crew, G. & Ksikes, A. Ensemble selection from libraries of models. In Proceedings of the Twenty-first International Conference on Machine Learning (2004).

  • Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189 (2006).

    PubMed 

    Google Scholar
     

  • Guerrier, S. et al. A predictive based regression algorithm for gene network selection. Front. Genet. 7, 97 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/

  • Fushiki, T. Estimation of prediction error by using k-fold cross-validation. Stat. Comput. 21, 137–146 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Molinaro, A. M., Simon, R. & Pfeiffer, R. M. Prediction error estimation: A comparison of resampling methods. Bioinformatics 21, 3301–3307 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Bernau, C. et al. Cross-study validation for the assessment of prediction algorithms. Bioinformatics 30, i105–i112 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vittinghoff, E., Glidden, D. V., Shiboski, S. C. & McCulloch, C. E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models (Springer, 2011).

    MATH 

    Google Scholar
     

  • Cox, D. Conditional and marginal association for binary random variables. Biometrika 90, 982–984 (2003).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Yule, G. U. Notes on the theory of association of attributes in statistics. Biometrika 2, 121–134 (1903).


    Google Scholar
     

  • Boehm, L., Reich, B. J. & Bandyopadhyay, D. Bridging conditional and marginal inference for spatially referenced binary data. Biometrics 69, 545–554 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zardavas, D., Irrthum, A., Swanton, C. & Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12, 381 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • De Saussure, F. Course in General Linguistics (Columbia University Press, 2011).


    Google Scholar
     

  • Chandler, D. Semiotics: The Basics (Taylor & Francis, 2017).


    Google Scholar
     

  • Wang, H., Lengerich, B. J., Aragam, B. & Xing, E. P. Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data. Bioinformatics 35, 1181–1187 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Parikh, R., Mathai, A., Parikh, S., Sekhar, G. C. & Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 56, 45 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peduzzi, P., Concato, J., Kemper, E., Holford, T. R. & Feinstein, A. R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373–1379 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Vittinghoff, E. & McCulloch, C. E. Relaxing the rule of ten events per variable in logistic and cox regression. Am. J. Epidemiol. 165, 710–718 (2007).

    PubMed 

    Google Scholar
     

  • Austin, P. C. & Steyerberg, E. W. Events per variable (epv) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat. Methods Med. Res. 26, 796–808 (2017).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • Song, L., Langfelder, P. & Horvath, S. Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinform. 13, 1–21 (2012).


    Google Scholar
     

  • Cun, J. & Yang, Q. Bioinformatics-based interaction analysis of mir-92a-3p and key genes in tamoxifen-resistant breast cancer cells. Biomed. Pharmacother. 107, 117–128 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Jinghua, H. et al. Microrna mir-92a-3p regulates breast cancer cell proliferation and metastasis via regulating b-cell translocation gene 2 (btg2). Bioengineered 12, 2033–2044 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson, S. et al. Downregulation of mir-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS ONE 7, e36051 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cava, C. et al. Integration of mrna expression profile, copy number alterations, and microrna expression levels in breast cancer to improve grade definition. PLoS ONE 9, e97681 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Maltseva, D. V. et al. Mirnome of inflammatory breast cancer. BMC Res. Notes 7, 1–10 (2014).


    Google Scholar
     

  • Li, J. et al. Long non-coding rna snhg1 activates hoxa1 expression via sponging mir-193a-5p in breast cancer progression. Aging 12, 10223–10234 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S.-J. et al. The mir-30 family: Versatile players in breast cancer. Tumor Biol. 39, 1010428317692204 (2017).


    Google Scholar
     

  • Song, C. et al. mir-200c inhibits breast cancer proliferation by targeting kras. Oncotarget 6, 34968 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochrane, D. R., Howe, E. N., Spoelstra, N. S. & Richer, J. K. Loss of mir-200c: A marker of aggressiveness and chemoresistance in female reproductive cancers. J. Oncol. 2010, 1–10 (2010).


    Google Scholar
     

  • Tfaily, M. A. et al. mirna expression in advanced Algerian breast cancer tissues. PLoS ONE 15, e0227928 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayes, J., Peruzzi, P. P. & Lawler, S. Micrornas in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. Mirbase: From microrna sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozomara, A. & Griffiths-Jones, S. Mirbase: Annotating high confidence micrornas using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozomara, A. & Griffiths-Jones, S. mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths-Jones, S., Saini, H. K., Van Dongen, S. & Enright, A. J. Mirbase: Tools for microrna genomics. Nucleic Acids Res. 36, D154–D158 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A. & Enright, A. J. Mirbase: Microrna sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Griffiths-Jones, S. The microrna registry. Nucleic Acids Res. 32, D109–D111 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microrna target sites in mammalian mrnas. Elife 4, e05005 (2015).

    PubMed Central 

    Google Scholar
     

  • Chiang, H. R. et al. Mammalian micrornas: Experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. & Wang, X. mirdb: An online database for prediction of functional microrna targets. Nucleic Acids Res. 48, D127–D131 (2020).

    CAS 

    Google Scholar
     

  • Luo, K. et al. Usp49 negatively regulates tumorigenesis and chemoresistance through fkbp51-akt signaling. EMBO J. 36, 1434–1446 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Targeting the brd4/foxo3a/cdk6 axis sensitizes akt inhibition in luminal breast cancer. Nat. Commun. 9, 1–17 (2018).

    ADS 

    Google Scholar
     

  • Lin, S. et al. Comprehensive analysis of the value of rab family genes in prognosis of breast invasive carcinoma. Biosci. Rep. 40, 1–10 (2020).

    ADS 

    Google Scholar
     

  • Martínez-Ramírez, A., Garay, E., García-Carrancá, A. & Vázquez-Cuevas, F. G. The p2ry2 receptor induces carcinoma cell migration and emt through cross-talk with epidermal growth factor receptor. J. Cell. Biochem. 117, 1016–1026 (2016).

    PubMed 

    Google Scholar
     

  • Gay-Bellile, M. et al. Ercc1 and telomere status in breast tumours treated with neoadjuvant chemotherapy and their association with patient prognosis. J. Pathol. Clin. Res. 2, 234–246 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to t cell-mediated killing. Science 359, 770–775 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Smart, S. K., Vasileiadi, E., Wang, X., DeRyckere, D. & Graham, D. K. The emerging role of tyro3 as a therapeutic target in cancer. Cancers 10, 474 (2018).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Eif5a2 is a novel chemoresistance gene in breast cancer. Breast Cancer 22, 602–607 (2015).

    PubMed 

    Google Scholar
     

  • Aure, M. R. et al. Integrated analysis reveals microrna networks coordinately expressed with key proteins in breast cancer. Genome Med. 7, 1–17 (2015).

    CAS 

    Google Scholar
     

  • Wallden, B. et al. Development and verification of the pam50-based prosigna breast cancer gene signature assay. BMC Med. Genom. 8, 1–14 (2015).


    Google Scholar
     

  • Wong, A. K., Sealfon, R. S., Theesfeld, C. L. & Troyanskaya, O. G. Decoding disease: From genomes to networks to phenotypes. Nat. Rev. Genet. 22, 774–790 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Claeskens, G. et al. Model Selection and Model Averaging (Cambridge Books, 2008).

    MATH 

    Google Scholar
     

  • Sagi, O. & Rokach, L. Ensemble learning: A survey. Wiley Interdiscipl. Rev. 8, e1249 (2018).


    Google Scholar
     

  • Nakagawa, H. & Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 109, 513–522 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kantarjian, H. & Yu, P. P. Artificial intelligence, big data, and cancer. JAMA Oncol. 1, 573–574 (2015).

    PubMed 

    Google Scholar
     

  • https://www.nature.com/articles/s41598-022-08737-5

    Next Post

    Scientists precisely define the ‘identity card’ of pancreatic endocrine cells

    The pancreas is a key metabolic regulator. When pancreatic beta cells cease producing enough insulin, blood sugar levels rise dangerously — a phenomenon known as hyperglycemia — thus triggering diabetes. After discovering that other mature pancreatic cells can adapt and partly compensate for the lack of insulin, a team from […]