Joint association of meal frequency and diet quality with metabolic syndrome in Iranian adults | BMC Nutrition

Via Peters
  • 1.

    Alizade Z, Azadbakht L. Review of epidemiology of metabolic syndrome in iran. Iran J Diabetes Metab. 2017;15(3):143–57.


    Google Scholar
     

  • 2.

    Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Day C. Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res. 2007;4(1):32–8.

    PubMed 

    Google Scholar
     

  • 4.

    Isomaa B. A major health hazard: the metabolic syndrome. Life Sci. 2003;73(19):2395–411.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Alberti KG, Zimmet PZ. Definition diagnosis and classification of diabetes mellitus and its complications Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Esmaillzadeh A, Azadbakht L. Consumption of hydrogenated versus nonhydrogenated vegetable oils and risk of insulin resistance and the metabolic syndrome among Iranian adult women. Diabetes Care. 2008;31(2):223–6.

    PubMed 

    Google Scholar
     

  • 8.

    Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, et al. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr. 2001;73(1):61–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    HUIJBREGTS PP, Feskens EJ, Kromhout D. Dietary patterns and cardiovascular risk factors in elderly men: the Zutphen Elderly Study. Int J Epidemiol. 1995;24(2):313–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma K-N. Eating patterns and risk of colon cancer. Am J Epidemiol. 1998;148(1):4–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Leech RM, Timperio A, Worsley A, McNaughton SA. Eating patterns of Australian adults: associations with blood pressure and hypertension prevalence. Eur J Nutr. 2019;58(5):1899–909.

    PubMed 

    Google Scholar
     

  • 13.

    Ahola AJ, Mutter S, Forsblom C, Harjutsalo V, Groop P-H. Meal timing, meal frequency, and breakfast skipping in adult individuals with type 1 diabetes–associations with glycaemic control. Sci Rep. 2019;9(1):1–10.


    Google Scholar
     

  • 14.

    Varady KA. Meal frequency and timing: impact on metabolic disease risk. Curr Opin Endocrinol Diabetes Obes. 2016;23(5):379–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96–121.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Jung CH, Lee JS, Ahn HJ, Choi JS, Noh MY, Lee JJ, et al. Association of meal frequency with metabolic syndrome in Korean adults: from the Korea National Health and Nutrition Examination Survey (KNHANES). Diabetol Metab Syndr. 2017;9:77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    House B, Shearrer G, Miller S, Pasch K, Goran M, Davis J. Increased eating frequency linked to decreased obesity and improved metabolic outcomes. Int J Obes. 2015;39(1):136–41.

    CAS 

    Google Scholar
     

  • 18.

    Pimenta AM, Bes-Rastrollo M, Gea A, Sayón-Orea C, Zazpe I, Lopez-Iracheta R, et al. Snacking between main meals is associated with a higher risk of metabolic syndrome in a Mediterranean cohort: the SUN Project (Seguimiento Universidad de Navarra). Public Health Nutr. 2016;19(4):658–66.

    PubMed 

    Google Scholar
     

  • 19.

    Tabarraei H, Hassan J, Parvizi MR, Golshahi H, keshavarz-Tarikhi H. Evaluation of the acute and sub-acute toxicity of the black caraway seed essential oil in Wistar rats. Toxicol Rep. 2019;6:869–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Hutchison AT, Heilbronn LK. Metabolic impacts of altering meal frequency and timing – Does when we eat matter? Biochimie. 2016;124:187–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Kahleova H, Lloren JI, Mashchak A, Hill M, Fraser GE. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J Nutr. 2017;147(9):1722–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Leech RM, Livingstone KM, Worsley A, Timperio A, McNaughton SA. Meal Frequency but Not Snack Frequency Is Associated with Micronutrient Intakes and Overall Diet Quality in Australian Men and Women. J Nutr. 2016;146(10):2027–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Conway JM, Ingwersen LA, Moshfegh AJ. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc. 2004;104(4):595–603.

    PubMed 

    Google Scholar
     

  • 24.

    Gibney M. Periodicity of eating and human health: present perspective and future directions. Br J Nutr. 1997;77(S1):S3–5. https://doi.org/10.1079/BJN19970099.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Leech RM, Worsley A, Timperio A, McNaughton SA. Understanding meal patterns: definitions, methodology and impact on nutrient intake and diet quality. Nutr Res Rev. 2015;28(1):1–21. https://doi.org/10.1017/S0954422414000262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Kahleova H, Lloren JI, Mashchak A, Hill M, Fraser GE. Meal frequency and timing are associated with changes in body mass index in Adventist Health Study 2. J Nutr. 2017;147(9):1722–8. https://doi.org/10.3945/jn.116.244749.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Fung TT, Pan A, Hou T, Mozaffarian D, Rexrode KM, Willett WC, et al. Food quality score and the risk of coronary artery disease: a prospective analysis in 3 cohorts. Am J Clin Nutr. 2016;104(1):65–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S. The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J. 2012;18(8):1073–80.


    Google Scholar
     

  • 29.

    Vasheghani-Farahani A, Tahmasbi M, Asheri H, Ashraf H, Nedjat S, Kordi R. The Persian, last 7-day, long form of the International Physical Activity Questionnaire: translation and validation study. Asian J Sports Med. 2011;2(2):106.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755–62.

    PubMed 

    Google Scholar
     

  • 31.

    Bauman A, Ainsworth BE, Sallis JF, Hagströmer M, Craig CL, Bull FC, et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). Am J Prev Med. 2011;41(2):228–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124(1):17–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Rahmawaty S, Charlton K, Lyons-Wall P, Meyer BJ. Dietary intake and food sources of EPA, DPA and DHA in Australian children. Lipids. 2013;48(9):869–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Wirt A, Collins CE. Diet quality–what is it and does it matter? Public Health Nutr. 2009;12(12):2473–92.

    PubMed 

    Google Scholar
     

  • 35.

    Franko DL, Striegel-Moore RH, Thompson D, Affenito SG, Schreiber GB, Daniels SR, et al. The relationship between meal frequency and body mass index in black and white adolescent girls: more is less. Int J Pediatr Obes (2005). 2008;32(1):23–9.

    CAS 

    Google Scholar
     

  • 36.

    Toschke AM, Thorsteinsdottir KH, von Kries R. Meal frequency, breakfast consumption and childhood obesity. Int J Pediatr Obes. 2009;4(4):242–8.

    PubMed 

    Google Scholar
     

  • 37.

    Mota J, Fidalgo F, Silva R, Ribeiro JC, Santos R, Carvalho J, et al. Relationships between physical activity, obesity and meal frequency in adolescents. Ann Hum Biol. 2008;35(1):1–10.

    PubMed 

    Google Scholar
     

  • 38.

    Field AE, Austin SB, Gillman MW, Rosner B, Rockett HR, Colditz GA. Snack food intake does not predict weight change among children and adolescents. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2004;28(10):1210–6.

    CAS 

    Google Scholar
     

  • 39.

    Morgan KJ, Johnson SR, Stampley GL. Children’s frequency of eating, total sugar intake and weight/height stature. Nutr Res. 1983;3(5):635–52.


    Google Scholar
     

  • 40.

    Howarth NC, Huang TT, Roberts SB, Lin BH, McCrory MA. Eating patterns and dietary composition in relation to BMI in younger and older adults. International journal of obesity (2005). 2007;31(4):675–84.

    CAS 

    Google Scholar
     

  • 41.

    Murakami K, Livingstone MB. Eating Frequency Is Positively Associated with Overweight and Central Obesity in U.S. Adults. The Journal of nutrition. 2015;145(12):2715–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Murakami K, Livingstone MB. Eating frequency in relation to body mass index and waist circumference in British adults. International journal of obesity (2005). 2014;38(9):1200–6.

    CAS 

    Google Scholar
     

  • 43.

    Smith KJ, Blizzard L, McNaughton SA, Gall SL, Dwyer T, Venn AJ. Daily eating frequency and cardiometabolic risk factors in young Australian adults: cross-sectional analyses. Br J Nutr. 2012;108(6):1086–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Ha K, Song Y. Associations of Meal Timing and Frequency with Obesity and Metabolic Syndrome among Korean Adults. Nutrients. 2019;11(10):2437.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 45.

    Ritchie LD. Less frequent eating predicts greater BMI and waist circumference in female adolescents. Am J Clin Nutr. 2012;95(2):290–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Flegal KM. Evaluating epidemiologic evidence of the effects of food and nutrient exposures. Am J Clin Nutr. 1999;69(6):1339s-s1344.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    McCrory MA, Campbell WW. Effects of eating frequency, snacking, and breakfast skipping on energy regulation: symposium overview. J Nutr. 2011;141(1):144–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Chapelot D. The role of snacking in energy balance: a biobehavioral approach. J Nutr. 2011;141(1):158–62.

    PubMed 

    Google Scholar
     

  • 49.

    Pliquett RU, Führer D, Falk S, Zysset S, von Cramon DY, Stumvoll M. The effects of insulin on the central nervous system–focus on appetite regulation. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolism. 2006;38(7):442–6.

    CAS 

    Google Scholar
     

  • 50.

    Ohkawara K, Cornier MA, Kohrt WM, Melanson EL. Effects of increased meal frequency on fat oxidation and perceived hunger. Obesity (Silver Spring, Md). 2013;21(2):336–43.


    Google Scholar
     

  • 51.

    Morgan LM, Aspostolakou F, Wright J, Gama R. Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: a possible link? Ann Clin Biochem. 1999;36(Pt 4):447–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Stote KS, Baer DJ, Spears K, Paul DR, Harris GK, Rumpler WV, et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 2007;85(4):981–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Leidy HJ, Campbell WW. The effect of eating frequency on appetite control and food intake: brief synopsis of controlled feeding studies. J Nutr. 2011;141(1):154–7.

    PubMed 

    Google Scholar
     

  • 54.

    Tai MM, Castillo P, Pi-Sunyer FX. Meal size and frequency: effect on the thermic effect of food. Am J Clin Nutr. 1991;54(5):783–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Westerterp-Plantenga MS, Goris AH, Meijer EP, Westerterp KR. Habitual meal frequency in relation to resting and activity-induced energy expenditure in human subjects: the role of fat-free mass. Br J Nutr. 2003;90(3):643–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Belko AZ, Barbieri TF. Effect of meal size and frequency on the thermic effect of food. Nutr Res. 1987;7(3):237–42.


    Google Scholar
     

  • https://bmcnutr.biomedcentral.com/articles/10.1186/s40795-022-00507-w

    Next Post

    Spanning Treatment Modalities: Psychotherapy, Psychopharmacology, and Neuromodulation

    This issue of the Journal reflects the remarkable breadth of our field as well as our treatment approaches. Here, we include papers that provide new findings and perspectives related to psychotherapeutic, pharmacological, and neuromodulatory interventions that are aimed at improving outcomes in patients with various psychiatric disorders. Additionally, a clinical […]