Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis

Via Peters
  • 1.

    Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article 

    Google Scholar
     

  • 2.

    Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article 

    Google Scholar
     

  • 3.

    Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Shi, H., Wei, J. & He, C. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Chen, Y. et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer 18, 127 (2019).

    Article 

    Google Scholar
     

  • 6.

    Chen, S. et al. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m(6)A-dependent manner. Cell Death Dis. 11, 659 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Li, Q., Wang, C., Dong, W., Su, Y. & Ma, Z. WTAP facilitates progression of endometrial cancer via CAV-1/NF-kappaB axis. Cell Biol. Int. 45, 1269–1277 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Li, H. et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J. Cell. Mol. Med. 24, 4452–4465 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Yu, H. L. et al. WTAP is a prognostic marker of high-grade serous ovarian cancer and regulates the progression of ovarian cancer cells. Onco Targets Ther. 12, 6191–6201 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Chen, L. & Wang, X. Relationship between the genetic expression of WTAP and bladder cancer and patient prognosis. Oncol. Lett. 16, 6966–6970 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wu, L. S., Qian, J. Y., Wang, M. & Yang, H. Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses. Mol. Med. Rep. 14, 2823–2831 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Wu, L., Wu, D., Ning, J., Liu, W. & Zhang, D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 19, 326 (2019).

    Article 

    Google Scholar
     

  • 13.

    Zeng, Y. et al. Combined high resistin and EGFR expression predicts a poor prognosis in breast cancer. Biomed. Res. Int. 2020, 8835398 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Paltoglou, S. et al. Novel androgen receptor coregulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res. 77, 3417–3430 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Liang, H., Lin, Z., Ye, Y., Luo, R. & Zeng, L. ARRB2 promotes colorectal cancer growth through triggering WTAP. Acta Biochim. Biophys. Sin. 53, 85–93 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Xue, C. et al. Distribution, clinicopathologic features and survival of breast cancer subtypes in Southern China. Cancer Sci. 103, 1679–1687 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Ugras, S., Stempel, M., Patil, S. & Morrow, M. Estrogen receptor, progesterone receptor, and HER2 status predict lymphovascular invasion and lymph node involvement. Ann. Surg. Oncol. 21, 3780–3786 (2014).

    Article 

    Google Scholar
     

  • 19.

    Mazouni, C. et al. Outcome in breast molecular subtypes according to nodal status and surgical procedures. Am. J. Surg. 205, 662–667 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Si, C., Jin, Y., Wang, H. & Zou, Q. Association between molecular subtypes and lymph node status in invasive breast cancer. Int. J. Clin. Exp. Pathol. 7, 6800–6806 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Kim, M. J. et al. Clinicopathologic significance of the basal-like subtype of breast cancer: A comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum. Pathol. 37, 1217–1226 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Lakhani, S. R. E. I., Schnitt, S. J., Tan, P. H. & van de Vijver, M. J. WHO Classification of Tumours of the Breast 4th edn. (IARC Press, 2012).


    Google Scholar
     

  • 23.

    Yang, W. T. & Bu, H. Updates in the 5(th) edition of WHO classification of tumours of the breast. Zhonghua Bing Li Xue Za Zhi 49, 400–405 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Park, S. et al. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 21, 50–57 (2012).

    Article 

    Google Scholar
     

  • 25.

    Wang, C. Q. et al. Fascin-1 as a novel diagnostic marker of triple-negative breast cancer. Cancer Med. 5, 1983–1988 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Wang, C. Q. et al. EGFR conjunct FSCN1 as a novel therapeutic strategy in triple-negative breast cancer. Sci. Rep. 7, 15654 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Dong, X. F. et al. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification. Biomed. Res. Int. 2020, 8823270 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Wang, C. Q. et al. High expression of both resistin and fascin-1 predicts a poor prognosis in patients with colorectal cancer. Biomed. Res. Int. 2020, 8753175 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Wang, C. Q. et al. Expression of HMGB1 protein in breast cancer and its clinicopathological significance. Zhonghua Bing Li Xue Za Zhi 49, 57–61 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Nguyen, T. H., Nguyen, V. H., Nguyen, T. L., Qiuyin, C. & Phung, T. H. Evaluations of biomarker status changes between primary and recurrent tumor tissue samples in breast cancer patients. Biomed. Res. Int. 2019, 7391237 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 36, 2105–2122 (2018).

    CAS 
    Article 

    Google Scholar
     

  • https://www.nature.com/articles/s41598-022-05035-y

    Next Post

    A systematic review and meta-analysis of population-based studies including over 80 million births

    Citation: Zhang T-N, Huang X-M, Zhao X-Y, Wang W, Wen R, Gao S-Y (2022) Risks of specific congenital anomalies in offspring of women with diabetes: A systematic review and meta-analysis of population-based studies including over 80 million births. PLoS Med 19(2): e1003900. https://doi.org/10.1371/journal.pmed.1003900 Academic Editor: Jenny E. Myers, University of […]